金屬鋰具有極高的理論比容量(3860 mAh/g,相當于商業(yè)化鋰電池石墨負極的十倍)和極低的電化學反應電位,是一種極具前景的新一代儲能電池(鋰硫、鋰空、固態(tài)金屬電池等)負極材料。然而,以金屬鋰作為負極存在相互牽制的挑戰(zhàn),包括充放電過程中的鋰枝晶生長、固態(tài)電解質界面膜不穩(wěn)定性及伴隨的巨大體積變化等,不僅降低電池效率、縮短使用壽命,還帶來不可忽視的安全隱患,長期制約其實際應用。針對上述難題,各種方案已被廣泛示范,如電解液成分的調控、人工界面膜的引入、三維集流體的構建等。然而,面向實際應用及超厚電極電池發(fā)展需求,在高面負載和高電流密度下實現其穩(wěn)定循環(huán)仍極具挑戰(zhàn)性。
中國科學院國家納米科學中心研究員李祥龍一直致力于儲能雜化材料的結構設計、系統(tǒng)工程、構效關系及應用探索,包括鋰離子及鋰金屬電池。最近,由葉脈獲得啟示,李祥龍及其團隊提出一種宿主空間調制策略,采用木頭碳化和化學氣相沉積技術制備出一類具有自支撐三維結構的碳納米纖維網絡均勻覆蓋的低迂曲度碳質微溝道垂直陣列(CTC),用于鋰金屬復合負極。該三維宿主材料模仿葉脈中的“協作分工”,一方面,低迂曲度碳質微溝道不僅可容納充放電過程中的體積變化,還提供長程范圍內鋰離子的均勻、直接和快速輸運通道;另一方面,均勻覆蓋的碳納米纖維網絡通過強的毛細作用提高電解液親和力,從而作為局部儲液池,促進鋰離子在短程范圍內的均勻分布和沉積。
基于碳質微溝道和碳納米纖維的空間協同及鋰離子輸運和分布的分工協作,CTC可承受極端的面負載和面電流密度,在不同高面負載和高電流密度下(分別高達40 mAh/cm2和40 mA/cm2)表現出高的鋰沉積效率及循環(huán)穩(wěn)定性,且兼具高安全特征。比如,其在電流密度為10 mA/cm2和面容量為30 mAh/cm2的極端苛刻條件下可以以很低的極化、無枝晶、穩(wěn)定地循環(huán)1080圈以上,基于CTC和鈷酸鋰正極組裝的全電池在商業(yè)水平的負載條件下(3.4 mAh/cm2)循環(huán)200圈后容量保持率仍高達86%(400圈為79%)。上述研究為高性能鋰及其他金屬負極的設計、構建及應用提供了一種新思路和新途徑。
該項工作以Spatially Hierarchical Carbon Enables Superior Long-Term Cycling of Ultrahigh Areal Capacity Lithium Metal Anodes為題于2月11日發(fā)表在Matter上。該研究得到國家自然科學基金委、中科院等的支持。
碳納米纖維網絡均勻覆蓋的低迂曲度碳質微溝道垂直陣列的設計、結構、制備及性能
(來源:國家納米科學中心)